Parallel Multiplication of a Vector by a Kronecker Product of Matrices (Part II)

نویسندگان

  • Claude Tadonki
  • Bernard Philippe
چکیده

The paper provides a generalization of our previous algorithm for the parallel multiplication of a vector by a Kronecker product of matrices. For any p, a factor of the problem size, our algorithm runs on p processors with a minimum number of communication steps and memory space. Specifically, on p processors with global communication, we show that the multiplication requires at least Θ(log(p)) communication steps, assuming that there is no computation redundancy. This complexity is revised according to the underlying topology, and some performance results on the CRAY T3E are given. keywords Kronecker product, scheduling, communication, complexity. AMS subject classifications. 15A15, 15A09, 15A23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Vector-Kronecker Product Multiplication with Rectangular Factors

The infinitesimal generator matrix underlying a multidimensional Markov chain can be represented compactly by using sums of Kronecker products of small rectangular matrices. For such compact representations, analysis methods based on vector-Kronecker product multiplication need to be employed. When the factors in the Kronecker product terms are relatively dense, vectorKronecker product multipli...

متن کامل

New Approach To A Class Of Matrices

The displacement structure is extended to a Kronecker matrix W ⊗ Z. A new class of Kronecker-like matrices with the displacement rank r, r < n will be formulated and presented. The computational complexity of multiplication with vectors for Kronecker-like matrices has been accelerated. Applying the displacement, which was originally discovered by Kailath, Kung and Morf [15], a new superfast alg...

متن کامل

Some orthogonal matrices constructed by strong Kronecker multiplication

Strong Kronecker multiplication of two matrices is useful for constructing new orthogonal matrices from those known. These results are particularly important as they allow small matrices to be combined to form larger matrices, but of smaller order than the straight-forward Kronecker product would permit.

متن کامل

Complexity of Kronecker Operations on Sparse Matrices with Applications to the Solution of Markov Models

We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing approaches, we give new results with respect to...

متن کامل

Complexity of Kronecker Operations on Sparse Matrices with Applications to Solution of Markov Models

We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing approaches, we give new results with respect to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scalable Computing: Practice and Experience

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1999